



Pre-feasibility Study

# METAL INJECTION MOLDING TECHNOLOGY

January 2023

The figures and financial projections are approximate due to fluctuations in exchange rates, energy costs, and fuel prices etc. Users are advised to focus on understanding essential elements such as production processes and capacities, space, machinery, human resources, and raw material etc. requirements. Project investment, operating costs, andrevenues can change daily. For accurate financial calculations, utilize financial calculators on SMEDA's website and consult financial experts to stay current with market conditions.

Small and Medium Enterprises Development Authority Ministry of Industries and Production Government of Pakistan

# **Table of Contents**

| 1.   | DISCLAIMER                                          | 5  |
|------|-----------------------------------------------------|----|
| 2.   | EXECUTIVE SUMMARY                                   | 6  |
| 3.   | INTRODUCTION TO SMEDA                               | 7  |
| 4.   | PURPOSE OF THE DOCUMENT                             | 7  |
| 5.   | BRIEF DESCRIPTION OF PROJECT &products              | 8  |
| 5.1. | Process Flow for Metal Injection Molding Technology | 16 |
| 5.2. | Installed and Operational Capacities                | 18 |
| 6.   | CRITICAL FACTORS                                    | 20 |
| 7.   | GEOGRAPHICAL POTENTIAL FOR INVESTMENT               | 20 |
| 8.   | POTENTIAL TARGET MARKETS/Customers                  | 21 |
| 9.   | PROJECT COST SUMMARY                                | 21 |
| 9.1. | Initial Project Cost                                | 21 |
| 9.   | 1.1. Land                                           | 22 |
| _    | 1.2. Building/ Infrastructure                       |    |
|      | .1.3. Machinery and Equipment                       |    |
|      | .1.4. Office Equipment                              |    |
| _    | 1.6. Vehicles                                       |    |
| 9.   | 1.7. Pre-Operating Costs                            |    |
| 9.   | 1.8. Security against Building                      | 27 |
| 9.2. | Breakeven Analysis                                  | 27 |
| 9.3. | Revenue Generation                                  | 27 |
| 9.4. | Variable Cost Estimate                              | 28 |
| 9.5. | Fixed Cost Estimate                                 | 31 |
| 9.6. | Financial Feasibility Analysis                      | 32 |
| 9.7. | Financial Feasibility Analysis with 50% Debt        | 32 |
| 9.8. | Human Resource Requirement                          | 33 |
| 10.  | CONTACT DETAILs                                     | 34 |
| 11.  | USEFUL LINKS                                        | 35 |
| 12.  | ANNEXURES                                           | 36 |
| 12.1 | I. Income Statement                                 | 36 |
| 12.2 | 2. Balance Sheet                                    | 37 |
| 12.3 | 3. Cash Flow Statement                              | 38 |
|      | KEY ASSUMPTIONS                                     |    |
|      | Operating Cost Assumptions                          |    |
|      | 2. Revenue Assumptions                              |    |
|      | •                                                   |    |



| 13.3. | Financial Assumptions    | 39 |
|-------|--------------------------|----|
| 13.4. | Debt Related Assumptions | 39 |
| 13.5  | Cash Flow Assumptions    | 40 |



# **Table of Tables**

| Table 1: Installed Capacity-Parts Production           | 19 |
|--------------------------------------------------------|----|
| Table 2: Installed Capacity-Product Wise               | 19 |
| Table 3: Initial Project Cost estimates                | 21 |
| Table 4: Breakup of Space Requirement                  | 22 |
| Table 5: Building Renovation Cost                      | 23 |
| Table 6: Machinery and Equipment Cost Details          | 24 |
| Table 7: Office Equipment Cost Details                 | 25 |
| Table 8: Furniture & Fixtures Cost Details             | 25 |
| Table 9: Office Vehicle Cost Details                   | 26 |
| Table 10: Pre-Operating Cost Details                   | 26 |
| Table 11: Security against Building                    | 27 |
| Table 12: Breakeven Analysis                           |    |
| Table 13: Revenue Details                              | 27 |
| Table 14: Variable Cost Estimate                       | 28 |
| Table 15: Feedstock Cost                               |    |
| Table 16: Generator Fuel Cost                          | 29 |
| Table 17: Direct Labor                                 | 30 |
| Table 18: Vehicle Running Expenses                     | 30 |
| Table 19: Variable Cost Assumption                     | 30 |
| Table 20: Fixed Cost Estimate                          | 31 |
| Table 21: Management Staff                             | 31 |
| Table 22: Fixed Cost Assumptions                       | 32 |
| Table 23: Financial Feasibility Analysis               | 32 |
| Table 24: Financial Feasibility Analysis with 50% Debt | 32 |
| Table 25: Human Resource                               | 33 |
| Table 26: Contact Details                              |    |
| Table 27: Useful Links                                 | 35 |
| Table 28: Operating Cost Assumptions                   | 39 |
| Table 29: Revenue Assumptions                          | 39 |
| Table 30: Financial Assumptions                        | 39 |
| Table 31: Debt Related Assumption                      | 39 |
| Table 32: Cash Flow Assumptions                        | 40 |

3

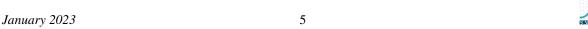


# **Table of Figures**

| Figure 1: Metal Injection Molding Process                      | 9  |
|----------------------------------------------------------------|----|
| Figure 2: Parts Made through MIM Technology                    | 10 |
| Figure 3: Trigger Components                                   | 13 |
| Figure 4: Magazine Release                                     | 13 |
| Figure 5: Operating Rods                                       | 13 |
| Figure 6: Bolt                                                 | 14 |
| Figure 7: Bolt Handle                                          |    |
| Figure 8: Bolt Stop                                            | 14 |
| Figure 9: Disassembly Lever                                    | 15 |
| Figure 10: Fire Safety                                         | 15 |
| Figure 11: Hinges                                              | 16 |
| Figure 12: Sights                                              | 16 |
| Figure 13: Process Flow for Metal Injection Molding Technology | 16 |
| Figure 14: Metal Injection Molding Machine                     | 17 |
|                                                                |    |



#### 1. DISCLAIMER


This information memorandum is to introduce the subject matter and provide a general idea and information on the said matter. Although, the material included in this document is based on data/information gathered from various reliable sources; however, it is based upon certain assumptions, which may differ from case to case. The information has been provided on, as is where is basis without any warranties or assertions as to the correctness or soundness thereof. Although, due care and diligence has been taken to compile this document, the contained information may vary due to any change in any of the concerned factors, and the actual results may differ substantially from the presented information. SMEDA, its employees or agents do not assume any liability for any financial or other loss resulting from this memorandum in consequence of undertaking this activity. The contained information does not preclude any further professional advice to be obtained by the user. The prospective user of this memorandum is encouraged to carry out additional diligence and gather any information which is necessary for making an informed decision, including taking professional advice from a qualified consultant/technical expert before taking any decision to act upon the information.

For more information on services offered by SMEDA, please contact our website:

#### www.smeda.org.pk

#### **Document Control**

| Document No.    | 252                          |
|-----------------|------------------------------|
| Prepared by     | SMEDA-Punjab (OS)            |
| Revision Date   | January 2023                 |
| For information | helpdesk.punjab@smeda.org.pk |





#### 2. EXECUTIVE SUMMARY

Metal Injection Molding (MIM) is a modern technology capable of producing high quality metal parts, produced in finished form and not requiring any further machining operations. It is also known as MIM Casting. MIM technology is suitable for producing smaller parts. For example, in case of arms products, it will be the internal parts which can be produced by this technology.

Metal casting can be done by either reusable or expendable molds. There are different types of metal casting methods such as sand casting, precision casting and high pressure metal die casting. However, the advance technology for producing small metal parts is MIM because ferrous parts of different products cannot be produced through High Pressure Metal Die casting. In spite of the fact that Pakistan has a large light engineering industry, MIM technology is not commonly used in the country. As per the available information, there is only one unit operating in Khyber Pakhtunkhwa which is using MIM as a manufacturing technique.

This technology can be used by numerous industries to manufacture a variety of meal parts for their products, including those in the automotive, medical and dental, firearms, hardware, textile machinery, lock industries, as well as for applications in aerospace and military sectors.

The proposed business unit of "Metal Injection Molding Technology" will manufacture small internal parts of firearms (pistols and shotguns). These products include trigger components, magazine release, operating rods, hammers, triggers, bolts, handles, and stops, disassembly lever, safeties, hinges and locks, mounts, sights and housings.

The proposed manufacturing unit would ideally be located in major cities of Pakistan like Lahore, Karachi, Faisalabad, Hyderabad, Multan, Sialkot, Gujranwala, and Peshawar and other cities of Pakistan. These cities have also been proposed due to the presence of industrial sectors and target industries.

This manufacturing unit will be set up in a rented building with an area of 4,950 square feet (22 Marla). The proposed business requires a total investment of PKR 118.46 million. This includes capital investment of PKR 103.96 million and working capital of PKR 14.50 million. The project will be established using 100% equity financing. The Net Present Value (NPV) of project is PKR 121.43 million with an Internal Rate of Return (IRR) of 42% and a Payback period of 3.32 years. Further, this project is expected to generate Gross Annual Revenues of PKR 269.82 million during 1st year, Gross Profit (GP) ratio ranging from 21% to 34% and Net Profit (NP) ratio ranging from 6% to 18% during the projection period of ten years. The proposed project will achieve its estimated breakeven point at capacity of 26% (896,084 parts) with annual breakeven revenue of PKR 118.45 million.

The proposed project may also be established using leveraged financing. At 50% financing at a cost of KIBOR+3%, the proposed business provides Net Present Value (NPV) of PKR 159.99 million, Internal Rate of Return (IRR) of 42% and Payback period of 3.30 years. Further, this project is expected to generate Net Profit (NP) ratio ranging



from 6% to 18% during the projection period of ten years. The proposed project will achieve its estimated breakeven point at capacity of 28% (947,019 parts) with breakeven revenue of PKR 125.18 million.

The proposed project will provide employment opportunities to 65 people, working 3 shifts of 7 hours each during 300 days in a year. High return on investment and steady growth of business is expected to the entrepreneur having some prior experience or education in the related field of business. The legal business status of this project is proposed as "Sole Proprietorship" or "Partnership" concern.

#### 3. INTRODUCTION TO SMEDA

The Small and Medium Enterprises Development Authority (SMEDA) was established in October 1998 with the objective to provide fresh impetus to the economy through development of Small and Medium Enterprises (SMEs).

With a mission "to assist in employment generation and value addition to the national income, through development of the SME sector, by helping increase the number, scale and competitiveness of SMEs", SMEDA has carried out 'sectorial research' to identify policy, access to finance, business development services, strategic initiatives and institutional collaboration and networking initiatives.

Preparation and dissemination of prefeasibility studies in key areas of investment has been a successful hallmark of SME facilitation by SMEDA.

Concurrent to the prefeasibility studies, a broad spectrum of business development services is also offered to the SMEs by SMEDA. These services include identification of experts and consultants and delivery of need-based capacity building programs of different types in addition to business guidance through help desk services.

National Business Development Program for SMEs (NBDP) is a project of SMEDA, funded through Public Sector Development Program of Government of Pakistan.

The NBDP envisages provision of handholding support / business development services to SMEs to promote business startup, improvement of efficiencies in existing SME value chains to make them globally competitive and provide conducive business environment through evidence-based policy-assistance to the Government of Pakistan. The Project is objectively designed to support SMEDA's capacity of providing an effective handholding to SMEs. The proposed program aimed at facilitating around 314,000 SME beneficiaries over a period of five years.

#### 4. PURPOSE OF THE DOCUMENT

The objective of the pre-feasibility study is primarily to facilitate potential entrepreneurs in project identification for investment. The project pre-feasibility may form the basis of an important investment decision and in order to serve this objective, the document/study covers various aspects of project concept development, start-up, and production, marketing, finance and business management.



The purpose of this document is to facilitate potential investors in setting up a "Metal Injection Molding Technology" by providing a general understanding of the business with the intention of supporting them in investment decisions.

The need to come up with pre-feasibility reports for undocumented or minimally documented sectors attains greater imminence as the research that precedes such reports reveal certain thumb rules; best practices developed by existing enterprises by trial and error, and certain industrial norms that become a guiding source regarding various aspects of business setup and its successful management.

Apart from carefully studying the whole document one must consider critical aspects provided later on, which form the basis of any investment decision.

#### 5. BRIEF DESCRIPTION OF PROJECT & PRODUCTS

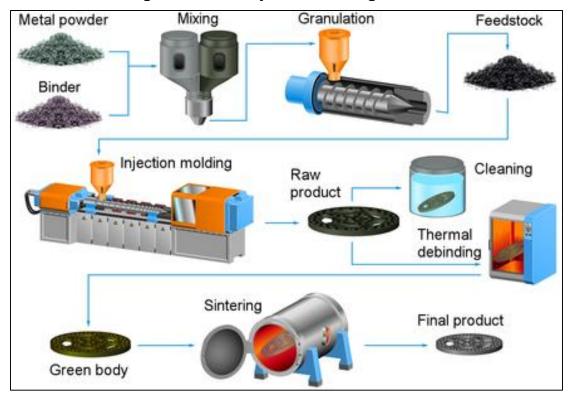
Metal Injection Molding (MIM) is a manufacturing technology that combines the traditional Powder Metallurgy<sup>1</sup> with plastic injection molding to make different types of metal parts. The technology is capable of producing high quality metal parts, produced in finished form and not requiring any further machining operations. Over the past, the MIM technology has established itself as a reliable and competitive manufacturing process for small precision components. MIM technology is suitable for producing smaller parts which require high degree of precision.

There are a wide variety of materials available for metal injection molding, and they generally fall into four categories:

- Ferrous alloys—steels, stainless steels, tool steels, iron-nickel magnetic alloys, and specialty ferrous alloys such as Invar and Kovar
- Tungsten alloys—tungsten heavy alloys and tungsten-copper
- Hard materials—cemented carbides (WC-Co), and cermets (Fe-TiC)
- Special materials that include, precious metals, titanium alloys, cobaltchromium, nickel, nickel-base super alloys, molybdenum, molybdenum-copper, and particulate composites.

The technology is suitable for all types of metals, both ferrous (iron & steel) and non-ferrous metal. However, it has a special advantage for producing ferrous parts. Parts of non-ferrous metals (aluminium, zinc, copper, etc.) can be made easily by using High Pressure Die Casting technology. These metals have low melting points and thus can be easily melted and forced into ferrous materials molds to make the desired parts. However, this is not possible if one has to make parts from ferrous metals.

8


5

January 2023

<sup>&</sup>lt;sup>1</sup> Powder metallurgy is a metal-forming process performed by heating compacted metal powders to just below their melting points. The process generally consists of three basic steps: powder blending (pulverization), die compaction, and sintering.

The reason for this is the high melting point of iron and steel. The molds used for High Pressure Die Casting are made of ferrous metals. When iron and steel is melted at around 1500C and poured into those molds, the molten metal melts the molds as well. Mold thus gets damaged and the part of the desired design and shape cannot be manufactured. In MIM, metals are not completely melted which makes this technology suitable for making ferrous parts also.

The standard powder metallurgy can achieve only 80-90% of theoretical density whereas MIM can achieve 95-100%. This makes it possible to achieve close tolerances and reduce costs by producing small, complex parts over high production runs. The steps involved in the production of a metal parts using MIM are schematically shown in Figure 1.



**Figure 1: Metal Injection Molding Process** 

Metal Injection Molding technology today is being practiced in more than 100 countries and its production is continuously increasing. In developed countries, MIM technology has gained popularity in different industries such as automotive, medical and dental, firearms, hardware, and lock industries, as well as the aerospace and military etc. They have almost completely converted to this technology for producing small parts with better quality and efficiency of time and production. In Pakistan, this technology has not gained popularity since there is lack of knowledge about the benefits of this technology.



#### **Benefits of MIM Technology**

Metal Injection Molding Technology is used by numerous industries to manufacture a wide variety of parts for their products. MIM technology has multiple advantages, some of these are discussed below:

#### **Mass Production**

MIM technology can be used for producing large volumes, which is not possible through conventional machining operations. Having MIM facility provides the opportunity to serve to bigger orders in local and export markets. While mass production is presented as an advantage, it sometimes also becomes a limitation since producing smaller volumes on MIM facility increases the cost and may make the proposition infeasible in some cases.

#### Suitability for all Types of Metals

MIM technology can be used for making parts from all types of metals and alloys, including ferrous as well as nonferrous materials. These include high strength steels, stainless steels, refractory metals, titanium and copper alloys and low melting allows like brass, bronze, zinc and Aluminium. This is very relevant and beneficial for the arms products since different parts in any one type of weapon are often made from different metals.

#### **Intricate Designs Production**

It is possible to produce intricate designs using MIM technology which in many cases is not possible through conventional manufacturing methods. Figure 2 shows some complex parts made through MIM process.



Figure 2: Parts Made through MIM Technology

#### **High Degree of Precision**

Metal Injection Molding technology can produce parts with higher degree of precision, compared to that obtained through machining or other casting methods. This is a prime consideration while producing internal parts of different types of arms. Typical MIM



tolerances range from  $\pm$  0.3% to 0.5% of the dimension. However, tolerances are highly dependent upon product geometry.

#### Standardization of Parts

MIM technology has the capability to produce standardized parts. All the parts produced from the same feedstock, same mold and same process conditions will be same in their intricate dimensions. This standardization is an important requirement for arms products where interchangeability is a desired attribute. MIM technology can produce parts that can offer full interchangeability in the weapons.

#### Production of Ready-to-Use Parts

The parts produced through MIM technology do not require any further treatment and can be used directly at their place of application. This is not the case with the parts produced through machining or other casting methods. For example, the parts made through sand casting or investment casting have to be machined to bring them into ready-to-use condition.

#### <u>Application of MIM Technology in Different Industries</u>

The application of MIM technology in different industries is shown below:

#### **Automotive Industry**

The automotive sector has become a major consumer of Metal Injection Molded parts. High strength, high complexity parts are used in engines, gearboxes, turbochargers, locking mechanisms, steering systems and electronic systems which can be produced by MIM technology. Some of the examples include rocker arms for BMW engines, shift lever transmission component and vanes for variable nozzle turbochargers etc.

#### Medical and Dental Industry

The medical and dental industry is another industry with a wide range of uses of metal injecting molding technology. Medical MIM provides benefits to a full range of medically related applications including retinal, cochlear (for hearing) and dental implants, minimally invasive surgical devices, orthopedic implants, cardiac instruments, pacemakers and many more.

#### Firearms Industry

Firearms industry also uses metal injecting molding technology for producing multiple products to achieve high quality and efficiency. Some examples are safe and arm rotor, pistol upswept, grip safety part, etc.

#### Hardware and Lock Industries

In hardware and lock industries range of products are made using MIM technology as these items needs maximum accuracy for better functions. Some products made using this technology are the door hardware (lock housings, cylinders, carriers, pins), hand and power tools (handles, bits, keyless chucks, blade clamps, pawls, ratchet



mechanisms), electronics (sensor housings, fiber optic connectors, microwave packages, heatsinks) and safety (fall protection mechanisms) etc.

#### Aerospace Industry

Metal Injection Molding technology has found a number of applications in the aerospace sector, including high performance engine components, seatbelt parts, latches and fittings, spray nozzles and vane adjustment levers.

#### **Military Industry**

There are several advantages of MIM technology in developing defense equipment such as by using this molding technique with extremely tough components, the manufactured products have high strength and capability to perform even in the harshest conditions.

#### **Products of the Proposed MIM Unit**

The proposed business unit "Metal Injection Molding Technology" will manufacture small internal parts of different types of firearms. These products include trigger components, magazine release, operating rods, hammers, triggers, bolts, handles and stops, disassembly lever, safeties, hinges and locks, mounts, sights and housings. These are the main types of internal parts in pistols and shotguns.

These products have been included since these have high demand in the Pakistan as large volumes pistols, shotguns and weapons are being produced in Pakistan. Currently, these small parts of the firearms are produced either by machining, which is a very slow and tedious process, or by investment casting (also called precision casting or low wax casting) which does not produce finished parts and thus those parts have to be machined further to get the final finish before they may be used for the intended purposes.

The products of the proposed units are explained below:

#### Trigger Components

A trigger is a mechanism that actuates the function of a ranged weapon such as a firearm shot gun pistol etc. Following are the components of the trigger.

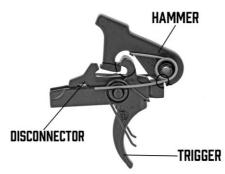
#### Trigger

Trigger is attached to firearm and helps in firing by providing support to the disconnector. Disconnector is held by trigger when one loads a gun or pistol.

#### Disconnector

Disconnector is attached to the trigger. It holds the hammer when the gun is loaded. When trigger is pressed, it frees the hammer for hitting the bullet.

#### Hammer


Hammer is attached near the trigger to strike the bullet. It contains pin, which activates the bullet.



#### Hammer Pin

Hammer pin is attached in the hammer. It is in narrow in shape which easily strikes the bullet to fire. Hammer is of large size so it cannot hit the bullet and nor the spring or pin alone can provide such force to fire the bullet. That is why pin is attached to the trigger to fire or trigger the bullet. Figure 3 shows trigger components.

**Figure 3: Trigger Components** 



#### Magazine Release

#### Mag Catch

Mag catches holds the magazine in the pistol which has the bullet for firing.

#### Mag Release Button

As mag catch holds the magazine, for the release of magazine, mag button is used. By pressing it, mag catch releases the magazine. Figure 4 shows magazine release.

Figure 4: Magazine Release



#### Operating Rods

Operating rod has the same diameter as a core barrel and is coupled with it. It gives additional rigidity to the core barrel and helps to prevent deflection of the borehole. It is also called core-barrel rod oversize rod. Figure **5** shows operating rods.

Figure 5: Operating Rods





#### **Bolts, Bolt Handles and Bolt Stops**

A bolt is the part of a repeating firearm that blocks the rear opening (breech) of the barrel chamber while the propellant burns, and moves back and forward to facilitate loading/unloading of cartridges from the magazine. Figure 6 shows bolt.

Figure 6: Bolt



Bolt handle is a device on a firearm which, when manipulated, results in the bolt being pulled to the rear, putting the hammer into a spring-loaded ready and 'set' position, allowing the operator to open the breech and eject any spent shell from the chamber. Figure 7 shows bolt handle.

Figure 7: Bolt Handle



A bolt stop works as to control the firing or bolt of the gun. It visually indicates when a handgun has expended all loaded ammunition and facilitates faster reloading by pulling back the slide or depressing the slide lock to advance the first round of a new magazine. By changing its position, firing of gun also changes. Figure 8 shows bolt stop.

Figure 8: Bolt Stop





#### **Disassembly Lever**

Disassembly Lever is a mechanism for the disassembly of a handgun without triggering, which prevents the consequential accidental firing of a cartridge in the chamber upon triggering. By sliding it, it will block the trigger, which prevent it firing. Figure 9 shows disassembly lever.



Figure 9: Disassembly Lever

#### Fire Safety

A safety is a device that blocks the action to prevent the firearm from shooting until the safety is released or pushed to the off position. Figure 10 shows fire safety.



Figure 10: Fire Safety

#### Hinges

Hinges are mechanical bearings that link two swinging objects or points to one another and allow them to move relative to each other about a fixed axis. Hinges allow limited movement, allowing the object to move only at one angle and restricting the other movements of swinging parts. Hinge is used in a shotgun for the break (or hinge) action. The barrels are pointed to the ground, a release is pressed and the barrels move downward allowing for the loading and unloading of cartridges. Figure 11 shows hinges.

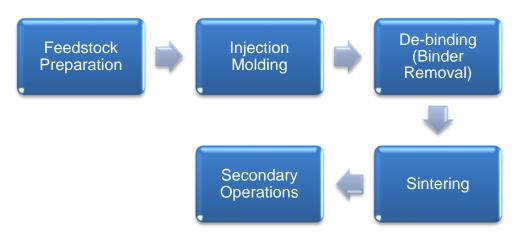


Figure 11: Hinges



# **Sights**

A sight is a mechanical piece or device on top of a firearm used to aid in aiming of a firearm. There are mostly two types of sights on a firearm rear sight and front sight. The rear sights are closer to the shooter's eyes whereas front sights are farther from the shooter's eyes. Figure 12 shows sights.


Figure 12: Sights



#### 5.1. Process Flow for Metal Injection Molding Technology

A general process flow of a metal injection molding technology is shown in Figure 13.

Figure 13: Process Flow for Metal Injection Molding Technology



The brief description of process flow in as follows:



#### Feedstock Preparation

The primary raw materials for MIM are metal powders, thermoplastic and wax binders. The binder is only an intermediate processing aid and is removed from the products after injection molding. The properties of the powder determine the final properties of the MIM product. The blended powder mix is worked into the plastified binder at an elevated temperature using a kneader or shear roll extruder. The intermediate product is called feedstock. It is usually granulated with granule sizes of several millimeters, as is common in the plastic injection molding industry.

Feedstock of different metals can be purchased ready-to-mold from many international suppliers, or it can be manufactured in-house by a MIM producer if the necessary skills and knowledge are available. There is no issue in the availability of feedstock of any metal or alloy. Smaller volumes of feedstock are usually not sold by the suppliers. The suppliers usually demand to have larger orders.

#### Injection Molding

The feedstock, upon heating, becomes a viscous slurry which is injected under high pressure into an engineered mold to form the desired shape component. The injection molding process is equivalent to the forming of plastic parts. Once molded, the component is referred to as a Green Part. The variety of part geometries that can be produced by this process is similar to the great variety of plastic components. The geometry of the Green Part is identical to that of the finished piece, but to allow for shrinkage during the sintering phase, it is about 20% larger in size than the desired final size of the finished component. Upon cooling, the part is ejected from the mold. Figure 14 shows metal injection molding machine.



Figure 14: Metal Injection Molding Machine

#### **De-binding (Binder Removal)**

De-binding involves a controlled heating process to remove most of the binders. The binder removal process serves to obtain parts with an interconnected pore network without destroying the shape of the components. The process removes the binders and prepares the part for the final step – sintering. Once de-binding is complete, the



component is referred to as Brown Part. At the end of the binder removal process, there is often still some binder left in the parts holding the metal powder particles together, but the pore network allows the evaporation of the residual binder quickly in the initial phase of sintering.

#### Sintering

The Brown part is held together by a small amount of the binder and is very fragile. The sintering process is carried out in a furnace where the part is subjected to high temperatures near the melting point of the material. The conditions fuse the metal powder together into a near fully dense solid. The process leads to the elimination of most of the pore volume formerly occupied by the binder to give the part its final desired geometry. MIM parts exhibit a substantial shrinkage during sintering. The linear shrinkage is usually as high as 15 to 20%. The entire sintering process takes 15-20 hours.

#### Secondary Operations

To improve material properties, achieve tight tolerances, enhance cosmetic surface, or assemble other components, the sintered MIM parts may be further processed by conventional metal working processes such as heat treatments, surface treatments, forging, CNC machining, PVD coating, etc.

#### 5.2. Installed and Operational Capacities

The proposed manufacturing unit will operate in a three shift of 7 hours in a day for 300 days in a year. Further, it is assumed that the operational capacity for the manufacturing unit is 60% during the first year of its operations. The capacity will increase at the rate of 5% per annum attaining a capacity of maximum of 90% of its total manufacturing capacity during the projected period of 10 years. The manufacturing unit will manufacture 3,402,000 different parts at maximum capacity which include 510,300 trigger components, 340,200 operating rods, 510,300 magazine releases, 170,100 hammers, 510,300 triggers, 340,200 disassembly levers, 170,100 mounts, sights and housings, 510,300 bolts, handles, and stops and 340,200 safeties, hinges, and locks.

The initial year manufacturing capacity of the proposed manufacturing unit is assumed to be 60% at which the proposed unit will manufacture 2,041,200 different parts which include 306,180 trigger components, 204,120 operating rods, 306,180 magazine release, 102,060 hammers, 306,180 triggers, 204,120 disassembly lever, 102,060 mounts, sights and housings, 306,180 bolts, handles, and stops and 204,120 safeties, hinges, and locks.



**Table 1: Installed Capacity-Parts Production** 

| Cycle time<br>(seconds)<br>(A) | Number of<br>Seconds<br>in an hour<br>(B) | Number of<br>Strokes in an<br>hour (C=B/A) | Average No. of cavity in the mold (D) | Production per<br>hour (No. of<br>parts) (C*D) | Production<br>per day<br>(21 hour) | Production<br>per month (25<br>days) | Prodcution<br>Per year<br>(parts) |  |
|--------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------|--|
| 40                             | 3,600                                     | 90                                         | 6                                     | 540                                            | 11,340                             | 283,500                              | 3,402,000                         |  |

**Table 2: Installed Capacity-Product Wise** 

| Parts                       | Production of Parts @ 100% Capacity | Ratio | Product Wise Production @100% Capacity | Product Wise Production @50% Capacity |
|-----------------------------|-------------------------------------|-------|----------------------------------------|---------------------------------------|
| Trigger components          |                                     | 15%   | 510,300                                | 306,180                               |
| Operating rods              |                                     | 10%   | 340,200                                | 204,120                               |
| Magazine release            |                                     | 15%   | 510,300                                | 306,180                               |
| Hammers                     |                                     | 5%    | 170,100                                | 102,060                               |
| Triggers                    | 3,402,000                           | 15%   | 510,300                                | 306,180                               |
| Disassembly lever           |                                     | 10%   | 340,200                                | 204,120                               |
| Mounts, sights and housings |                                     | 5%    | 170,100                                | 102,060                               |
| Bolts, handles, and stops   |                                     | 15%   | 510,300                                | 306,180                               |
| Safeties, hinges, and locks |                                     | 10%   | 340,200                                | 204,120                               |
| Total                       |                                     | 100%  | 3,402,000                              | 2,041,200                             |



#### 6. CRITICAL FACTORS

Before making the decision to invest in metal injection molding technology, one should carefully analyze the associated risk factors. The important considerations in this regard include:

- Good technical knowhow and knowledge of the industry
- Availability of specialized workforce
- Knowledge of market demand and supply
- Rigorous supervision of the production process at every level
- Ability to generate work orders through networking
- Assurance of timely order fulfillment
- Compliance with international quality control standards
- Availability of high quality raw materials (metal powders, binders, etc.)
- Availability of high quality materials required for carrying out processes, (e.g., an important requirement is highly pure nitrogen gas)

#### 7. GEOGRAPHICAL POTENTIAL FOR INVESTMENT

The proposed project may be established in major cities including Lahore, Karachi, Faisalabad, Multan, Sialkot, Gujranwala, Peshawar, Hyderabad, etc. These areas are proposed due to following reasons:

Since MIM technology can be applied to any type of metal, its usefulness is applicable to wide majority of the sectors which are engaged in metal parts manufacturing. Thus, the demand for this technology will be much higher than that for any other casting technology. The demand for this technology can even be generated from major sectors in other provinces. Such as in Sialkot, certain types of surgical instruments may be made using MIM technology. The local auto sector can produce millions of parts per year using MIM technology as well as Textile industry which requires millions of spare parts every year can also produce these parts using MIM technology.

In the large cities of Pakistan, there are industrial sectors and large target industries due to which chances of availability of resources is high as compared to small cities so it will be beneficial to propose the project in large cities. Peshawar (and Dara Adam Khel) has large clusters for the production pistols and shotguns and the proposed project is producing products for these weapons. This is expected to open up more opportunities to grow.

#### 8. POTENTIAL TARGET MARKETS/CUSTOMERS

Metal Injection Molding technology is very new to Pakistan. There is only one MIM facility in the country with the name PIM-Tech Pakistan Pvt. Ltd. The manufacturing facility is situated in Hattar Industrial Estate, Khyber Pakhtunkhwa and it can produce different types of metal parts using MIM technology. The company was established in 2018 and since then it has been providing services to manufacture metal parts for different industries.

There is no other MIM facility in the country, not even in public sector. Pakistan Ordinance Factory (POF) in Wah is the largest arms manufacturing organization operating in public sector. There is no MIM facility even in that factory. Many important parts to be used in different types of weapons are imported.

In contrast to Pakistan, there are fourteen MIM facilities in India. Major share of the production of those factories is exported. So, it will be beneficial for Pakistan to introduce this technology and develop industries. The potential market for this business will be any sector such as automotive, medical and dental, firearms, hardware, lock industries, textile machinery, as well as the aerospace and military. The market targeted by the proposed project includes the producers of pistols and shotguns.

#### 9. PROJECT COST SUMMARY

A detailed financial model has been developed to analyze the commercial viability of Metal Injection Molding technology. Various assumptions relevant to revenue and costs along with the results of the analysis are outlined in this section.

The projected Income Statement, Cash Flow Statement and Balance Sheet are attached as annexures of this document.

All the figures in this financial model have been calculated after carefully considering the relevant assumptions and target market.

#### 9.1. Initial Project Cost

Table 3 provides fixed and working capital requirements for establishment of metal injection molding technology.

**Table 3: Initial Project Cost estimates** 

| Particulars               | Cost (PKR) | Reference |
|---------------------------|------------|-----------|
| Land                      | -          | 9.1.1     |
| Building / Infrastructure | 738,312    | 9.1.2     |
| Machinery & equipment     | 94,020,000 | 9.1.3     |
| Office equipment          | 2,019,500  | 9.1.4     |



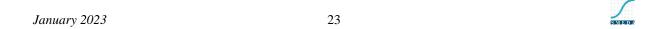
| Furniture & fixtures           | 1,113,500   | 9.1.5 |
|--------------------------------|-------------|-------|
| Office vehicles                | 1,913,000   | 9.1.6 |
| Pre-operating costs            | 3,251,440   | 9.1.7 |
| Security Against Building      | 900,000     | 9.1.8 |
| Total Capital Cost - (A)       | 103,955,752 |       |
| Equipment spare part inventory | 313,400     |       |
| Raw material inventory         | 10,886,400  |       |
| Upfront building rent          | 300,000     |       |
| Cash                           | 3,000,000   |       |
| Total Working Capacity – (B)   | 14,499,800  |       |
| Total Project Cost - (A+B)     | 118,455,552 |       |

#### 9.1.1. Land

The proposed unit will be established on a rented land having an area of 4,950 square feet (22 Marla). Total rental cost has been estimated as PKR 300,000. The breakup of the space requirement is provided in Table 4.

**Table 4: Breakup of Space Requirement** 

| Production Area               | Number | Length | Width | Area (Sq.<br>Ft.) |
|-------------------------------|--------|--------|-------|-------------------|
| Office Area                   | 1      | 20     | 25    | 500               |
| Reception Area                | 1      | 10     | 10    | 100               |
| Staff Area                    | 1      | 20     | 20    | 400               |
| Production Hall               | 1      | 50     | 40    | 2,000             |
| Store Room-Raw Material       | 1      | 25     | 25    | 625               |
| Store Room-Finished Goods     | 1      | 20     | 20    | 400               |
| R&D and Quality Assurance Lab | 1      | 10     | 10    | 100               |
| Show Room                     | 1      | 10     | 10    | 100               |
| Parking Area                  | 1      | 20     | 20    | 400               |
| Kitchen                       | 1      | 10     | 10    | 100               |
| Washrooms                     | 6      | 6      | 6     | 225               |
| Total Area                    |        |        |       | 4,950             |




#### 9.1.2. Building/Infrastructure

There will be no cost of building construction since the metal injection molding technology will be started in a rented building having an area of 4,950 square feet. However, there will be a renovation cost required to make the building usable for the business. Building rent of PKR 300,000 per month has been included in the operating cost as well as it is also included in the capital investment. The proposed project requires electricity load of around 278.37 KW for which an industrial electricity connection will be required. Table 5 provide details of building renovation cost.

**Table 5: Building Renovation Cost** 

| Cost Item        | Unit of<br>Measurement | Total<br>Units | Cost/Unit<br>(PKR) | Total Cost<br>(PKR) |
|------------------|------------------------|----------------|--------------------|---------------------|
| Paint Cost       | Liter                  | 121            | 800                | 96,804              |
| Labour Cost      | Sq.Feet                | 12,101         | 15                 | 181,508             |
| Tile Cost        | Sq.Feet                | 1,225          | 120                | 147,000             |
| Labour Cost-Tile | Sq.Feet                | 1,225          | 40                 | 49,000              |
| Curtain          | Units                  | 6              | 6,000              | 36,000              |
| Blinds           | Units                  | 4              | 7,000              | 28,000              |
| Decorations      |                        |                |                    | 200,000             |
| Total (PKR)      |                        |                |                    | 738,312             |



# 9.1.3. Machinery and Equipment

Table 6 provides details of machinery and equipment for the proposed project.

**Table 6: Machinery and Equipment Cost Details** 

| Cost Item                                    | Number of Items | Unit Cost<br>(PKR) | Duties<br>(PKR)<br>(0%) | Taxes<br>(PKR)<br>(18%) | Freight<br>Charges<br>(PKR)<br>(10%) | Installation<br>Charges(PKR)<br>(10%) | Total Cost<br>(PKR) |
|----------------------------------------------|-----------------|--------------------|-------------------------|-------------------------|--------------------------------------|---------------------------------------|---------------------|
| Metal Injection Molding<br>Machine (500 ton) | 1               | 18,000,000         | 0                       | 3,240,000               | 1,800,000                            | 1,800,000                             | 24,840,000          |
| De-binding Furnace<br>(450kg/20 hour)        | 1               | 23,000,000         | 0                       | 4,140,000               | 2,300,000                            | 2,300,000                             | 31,740,000          |
| Sintering Furnace<br>(450kg/20 hour)         | 1               | 23,000,000         | 0                       | 4,140,000               | 2,300,000                            | 2,300,000                             | 31,740,000          |
| Generator (300KVA)                           | 1               | 3,700,000          |                         |                         |                                      |                                       | 3,700,000           |
| Molds                                        | 4               | 500,000            |                         |                         |                                      |                                       | 2,000,000           |
| Total                                        |                 |                    |                         |                         |                                      |                                       | 94,020,000          |



# 9.1.4. Office Equipment

Table 7 shows details of equipment cost required for the metal injection molding technology.

**Table 7: Office Equipment Cost Details** 

| Cost Item                       | No. | Unit Cost (PKR) | Total Cost (PKR) |
|---------------------------------|-----|-----------------|------------------|
| Air Conditioners                | 6   | 105,000         | 630,000          |
| Laptop                          | 4   | 150,000         | 600,000          |
| Desktop Computer                | 5   | 75,000          | 375,000          |
| Printer                         | 2   | 51,500          | 103,000          |
| Water Dispenser                 | 2   | 20,000          | 40,000           |
| Security System (6 Cams , 2 MP) | 20  | 2,500           | 50,000           |
| DVR                             | 2   | 14,000          | 28,000           |
| LED/LCD TV                      | 1   | 36,000          | 36,000           |
| WI-FI/ Internet Connection      | 1   | 3,500           | 3,500            |
| Ceiling Fan                     | 17  | 8,000           | 136,000          |
| Exhaust Fan                     | 4   | 4,500           | 18,000           |
| Total Cost (PKR)                |     |                 | 2,019,500        |

#### 9.1.5. Furniture and Fixture

Table 8 provides details of furniture and fixtures.

**Table 8: Furniture & Fixtures Cost Details** 

| Cost Item         | Number of Items | Unit Cost (PKR) | Total Cost (PKR) |
|-------------------|-----------------|-----------------|------------------|
| Executive Table   | 1               | 60,000          | 60,000           |
| Executive Chair   | 1               | 30,000          | 30,000           |
| Staff Chairs      | 31              | 13,500          | 418,500          |
| Staff Table       | 14              | 30,000          | 420,000          |
| Visitor Chairs    | 5               | 15,000          | 75,000           |
| Reception Counter | 1               | 20,000          | 20,000           |
| Sofa Set          | 2               | 45,000          | 90,000           |
| Total Cost (PKR)  |                 |                 | 1,113,500        |

#### 9.1.6. Vehicles

Table 9 provides details of the vehicles required along with their cost for the proposed project.

**Table 9: Office Vehicle Cost Details** 

| Cost Item        | Number<br>of<br>Vehicles | Unit Cost<br>(PKR) | Registration Fee<br>Plus Number Plate<br>Charges | Total (PKR) |
|------------------|--------------------------|--------------------|--------------------------------------------------|-------------|
| Loader Rickshaw  | 1                        | 250,000            | 13,000                                           | 263,000     |
| Motorcycle       | 2                        | 111,500            | 13,000                                           | 236,000     |
| Suzuki Ravi      | 1                        | 1,400,000          | 14,000                                           | 1,414,000   |
| Total Cost (PKR) |                          |                    |                                                  | 1,913,000   |

# 9.1.7. Pre-Operating Costs

Table 10 provides details of estimated pre-operating costs.

**Table 10: Pre-Operating Cost Details** 

| Costs Item                  | No. | Hiring<br>Months<br>Beforein<br>Year 0 | Unit Cost<br>(per<br>month)<br>(PKR) | Cost<br>(PKR) |
|-----------------------------|-----|----------------------------------------|--------------------------------------|---------------|
| Production Supervisor       | 1   | 1                                      | 80,000                               | 80,000        |
| Injection Molding Operator  | 1   | 1                                      | 40,000                               | 40,000        |
| De-binding Furnace Operator | 1   | 1                                      | 40,000                               | 40,000        |
| Sintering Furnace Operator  | 1   | 1                                      | 40,000                               | 40,000        |
| R&D Manager                 | 1   | 1                                      | 100,000                              | 100,000       |
| Quality Checker             | 1   | 1                                      | 50,000                               | 50,000        |
| Procurment Officer          | 1   | 1                                      | 50,000                               | 50,000        |
| Office Boy                  | 1   | 1                                      | 25,000                               | 25,000        |
| Security Guard              | 3   | 1                                      | 25,000                               | 75,000        |
| Sweeper                     | 1   | 1                                      | 25,000                               | 25,000        |
| Utility expenses            |     |                                        |                                      | 2,726,440     |
| Total Cost (PKR)            |     |                                        |                                      | 3,251,440     |

#### 9.1.8. Security against Building

Table 11 provides details of estimated security against building.

**Table 11: Security against Building** 

| Particular                | Months | Rent per month (PKR) | Total (PKR) |
|---------------------------|--------|----------------------|-------------|
| Security against building | 3      | 300,000              | 900,000     |
| Total (PKR)               |        |                      | 900,000     |

# 9.2. Breakeven Analysis

Table 12 shows calculation of break-even analysis.

**Table 12: Breakeven Analysis** 

| Table 12. Breakeven Analysis   |                         |                        |  |  |  |
|--------------------------------|-------------------------|------------------------|--|--|--|
| Particulars                    | Amount First Year (PKR) | Profitability<br>Ratio |  |  |  |
| Sales (PKR) – A                | 269,821,125             | 100%                   |  |  |  |
| Variable Cost (PKR) – B        | 214,618,652             | 80%                    |  |  |  |
| Contribution (PKR) $(A-B) = C$ | 55,202,473              | 20%                    |  |  |  |
| Fixed Cost (PKR) – D           | 24,233,809              | 9%                     |  |  |  |
| Contribution Margin            | 20%                     |                        |  |  |  |
| Breakeven Analysis             |                         |                        |  |  |  |
| Breakeven Revenue (PKR)        |                         | 118,451,097            |  |  |  |
| Break-Even (Parts)             |                         | 896,084                |  |  |  |
| Breakeven Capacity             |                         | 26%                    |  |  |  |

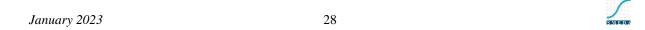
#### 9.3. Revenue Generation

Table 13 provides details regarding revenue generation from metal injection molding technology during the first year of its operations.

**Table 13: Revenue Details** 

| Products           | Number of Parts<br>Sold @60% | Price per part<br>(PKR) | Total<br>Revenue<br>(PKR) |
|--------------------|------------------------------|-------------------------|---------------------------|
| Trigger components | 299,801                      | 140                     | 41,972,175                |
| Operating rods     | 199,868                      | 130                     | 25,982,775                |




| Magazine release            | 299,801 | 140 | 41,972,175  |
|-----------------------------|---------|-----|-------------|
| Hammers                     | 99,934  | 120 | 11,992,050  |
| Triggers                    | 299,801 | 140 | 41,972,175  |
| Disassembly lever           | 199,868 | 130 | 25,982,775  |
| Mounts, sights and housings | 99,934  | 120 | 11,992,050  |
| Bolts, handles, and stops   | 299,801 | 140 | 41,972,175  |
| Safeties, hinges, and locks | 199,868 | 130 | 25,982,775  |
| Total (PKR)                 |         |     | 269,821,125 |

# 9.4. Variable Cost Estimate

Variable costs of the project have been provided in Table 14.

**Table 14: Variable Cost Estimate** 

| Description of Costs                                 | Amount (PKR) |
|------------------------------------------------------|--------------|
| Feedstock Cost                                       | 130,636,800  |
| Nitrogen Gas for Furnace                             | 2,100,000    |
| Generator Fuel Cost                                  | 8,640,000    |
| Direct Utilities Cost                                | 31,124,702   |
| Direct Labor                                         | 37,440,000   |
| Machinery Maintenance Cost                           | 1,880,400    |
| Communications expense (phone, mail, internet, etc.) | 1,092,000    |
| Office vehicles running expense                      | 612,750      |
| Office expenses (stationery, entertainment etc.)     | 1,092,000    |
| Total Variable Cost (PKR)                            | 214,618,652  |



**Table 15: Feedstock Cost** 

| Cost Item                              | Average weight per finished part (grams) | No. of parts<br>manufactured | Total weight of parts (kg) | Total weight of feedstock used (kg) (A) |
|----------------------------------------|------------------------------------------|------------------------------|----------------------------|-----------------------------------------|
| Feedstock Cost                         | 12                                       | 3,402,000                    | 40,824                     | 68,040                                  |
| Feedstock Price (PKR/kg) (B)           |                                          |                              |                            | 3,200                                   |
| Feedstock Cost @100%<br>(PKR) (C= A*B) |                                          |                              |                            | 217,728,000                             |
| Feedstock Cost 60% (PKR) (D=C*60%)     |                                          |                              |                            | 130,636,800                             |

#### **Table 16: Generator Fuel Cost**

| Machine          | Diesel<br>Consumption<br>per Liter/Hour | Generator<br>Usage Hours<br>per Day | Total Diesel<br>Consumption<br>Liter/Day | Diesel Price<br>per Liter | Total Diesel<br>Consumption<br>Liter/Day (PKR) | Total Diesel<br>Consumption<br>Liter/Year (PKR) |
|------------------|-----------------------------------------|-------------------------------------|------------------------------------------|---------------------------|------------------------------------------------|-------------------------------------------------|
| 300kva Generator | 50                                      | 3                                   | 150                                      | 240                       | 36,000                                         | 8,640,000                                       |



**Table 17: Direct Labor** 

| Personnel                   | Number of<br>Personnel | Salary per Head<br>(PKR) | Annual<br>Salaries<br>(PKR) |
|-----------------------------|------------------------|--------------------------|-----------------------------|
| Production Manager          | 3                      | 200,000                  | 7,200,000                   |
| Production Supervisor       | 3                      | 80,000                   | 2,880,000                   |
| Injection Molding Operator  | 6                      | 40,000                   | 2,880,000                   |
| De-binding Furnace Operator | 6                      | 40,000                   | 2,880,000                   |
| Sintering Furnace           | 6                      | 40,000                   | 2,880,000                   |
| R&D Manager                 | 3                      | 100,000                  | 3,600,000                   |
| R&D Officer                 | 3                      | 60,000                   | 2,160,000                   |
| Quality Manager             | 3                      | 80,000                   | 2,880,000                   |
| Quality Checker             | 3                      | 50,000                   | 1,800,000                   |
| Procurment Officer          | 3                      | 50,000                   | 1,800,000                   |
| Store Incharge              | 12                     | 45,000                   | 6,480,000                   |
| Total (PKR)                 | 51                     |                          | 37,440,000                  |

**Table 18: Vehicle Running Expenses** 

| Particulars                      | Loader<br>Ricksh<br>aw KM<br>Per<br>Year | Motorc<br>ycle<br>KM Per<br>Year | Suzuki<br>Ravi KM<br>Per<br>Year | Loader<br>Ricksha<br>w | Motorcy<br>cle | Suzuki<br>Ravi |       |
|----------------------------------|------------------------------------------|----------------------------------|----------------------------------|------------------------|----------------|----------------|-------|
| Fuel cost                        |                                          |                                  |                                  | 150,000                | 150,000        | 93,750         |       |
| Mileage (KM)                     |                                          | 24,000 15,000                    |                                  | 30                     | 40             | 40             |       |
| Oil & Tuning Cost per Year (PKR) | 18,000                                   |                                  | 24,000 15,000                    | 9,000                  | 20,000         | 20,000         |       |
| Oil & Tuning KM                  |                                          |                                  |                                  |                        |                | 2,000          | 1,200 |
| No of Vehicles                   |                                          |                                  |                                  | 1                      | 2              | 1              |       |
| Yearly Cost                      |                                          |                                  |                                  | 159,000                | 340,000        | 113,750        |       |

**Table 19: Variable Cost Assumption** 

| Description of Costs     | Rational      |
|--------------------------|---------------|
| Nitrogen Gas for Furnace | 7,000 per day |



| Machinery Maintenance Cost                        | 2% of Cost of Machinery         |
|---------------------------------------------------|---------------------------------|
| Commuication expense                              | 20% of Management staff expense |
| Office expenses (stationery, entertainment, etc.) | 20% of Management staff expense |

#### 9.5. Fixed Cost Estimate

Table 20 shows the estimated fixed cost of the project.

**Table 20: Fixed Cost Estimate** 

| Description of Costs                | Amount (PKR) |
|-------------------------------------|--------------|
| Management Staff                    | 5,460,000    |
| Building rental expense             | 3,600,000    |
| Indirect Utilities                  | 1,592,578    |
| Promotional expense                 | 1,349,106    |
| Depreciation expense                | 10,232,731   |
| Amortization of pre-operating costs | 650,288      |
| Bad debt expense                    | 1,349,106    |
| Total Fixed Cost                    | 24,233,809   |

**Table 21: Management Staff** 

| Personnel                 | Number of<br>Personnel | Salary per<br>Head (PKR) | Annual Salaries<br>(PKR) |
|---------------------------|------------------------|--------------------------|--------------------------|
| Receptionist              | 1                      | 45,000                   | 540,000                  |
| Admin and HR Officer      | 1                      | 50,000                   | 600,000                  |
| Sales & Marketing Officer | 1                      | 70,000                   | 840,000                  |
| Accountant                | 1                      | 40,000                   | 480,000                  |
| Office Boy                | 2                      | 25,000                   | 600,000                  |
| Security Guard            | 6                      | 25,000                   | 1,800,000                |
| Sweeper                   | 2                      | 25,000                   | 600,000                  |
| Total                     | 14                     |                          | 5,460,000                |



**Table 22: Fixed Cost Assumptions** 

| Description of Costs                                   | Rational        |
|--------------------------------------------------------|-----------------|
| Promotional expense                                    | 0.5% of revenue |
| Bad debt expense                                       | 0.5% of revenue |
| Depreciation                                           |                 |
| Building & infrastructure                              | 10% of cost     |
| Machinery & equipment                                  | 10% of cost     |
| Office equipment, Furniture & Fixture, Office vehicles | 15% of cost     |

#### 9.6. Financial Feasibility Analysis

The financial feasibility analysis provides the information regarding projected Internal Rate of Return (IRR), Net Present Value (NPV) and Payback period of the study, which is shown in Table 23.

**Table 23: Financial Feasibility Analysis** 

| Description                | Project     |
|----------------------------|-------------|
| IRR                        | 42%         |
| NPV (PKR)                  | 121,425,256 |
| Payback Period (years)     | 3.32        |
| Projection Years           | 10          |
| Discount rate used for NPV | 25%         |

#### 9.7. Financial Feasibility Analysis with 50% Debt

The financial feasibility analysis provides the information regarding projected IRR, NPV and payback period of the study on the basis of Debt: Equity Model (50:50), which is shown in Table 24.

**Table 24: Financial Feasibility Analysis with 50% Debt** 

| Description            | Project     |
|------------------------|-------------|
| IRR                    | 42%         |
| NPV (PKR)              | 159,988,078 |
| Payback Period (years) | 3.30        |



| Projection Years           | 10  |
|----------------------------|-----|
| Discount rate used for NPV | 22% |

# 9.8. Human Resource Requirement

The proposed services shall require the workforce as provided in Table 25.

**Table 25: Human Resource** 

| Personnel                      | Number of Personnel | Salary per<br>Head (PKR) | Annual Salaries<br>(PKR) |
|--------------------------------|---------------------|--------------------------|--------------------------|
| Production Manager             | 3                   | 200,000                  | 7,200,000                |
| Production Supervisor          | 3                   | 80,000                   | 2,880,000                |
| Injection Molding Operator     | 6                   | 40,000                   | 2,880,000                |
| De-binding Furnace<br>Operator | 6                   | 40,000                   | 2,880,000                |
| Sintering Furnace              | 6                   | 40,000                   | 2,880,000                |
| R&D Manager                    | 3                   | 100,000                  | 3,600,000                |
| R&D Officer                    | 3                   | 60,000                   | 2,160,000                |
| Quality Manager                | 3                   | 80,000                   | 2,880,000                |
| Quality Checker                | 3                   | 50,000                   | 1,800,000                |
| Receptionist                   | 1                   | 45,000                   | 540,000                  |
| Admin and HR Officer           | 1                   | 50,000                   | 600,000                  |
| Sales & Marketing Officer      | 1                   | 70,000                   | 840,000                  |
| Procurment Officer             | 3                   | 50,000                   | 1,800,000                |
| Store Incharge                 | 12                  | 45,000                   | 6,480,000                |
| Accountant                     | 1                   | 40,000                   | 480,000                  |
| Office Boy                     | 2                   | 25,000                   | 600,000                  |
| Security Guard                 | 6                   | 25,000                   | 1,800,000                |
| Sweeper                        | 2                   | 25,000                   | 600,000                  |
| Total                          | 65                  |                          | 42,900,000               |



# 10. CONTACT DETAILS

The contact details of all the major suppliers of tools and equipment are given in Table 26.

**Table 26: Contact Details** 

| Name of Supplier                                        | Products                                 | Contact                | Website/Email            |
|---------------------------------------------------------|------------------------------------------|------------------------|--------------------------|
| Easy Fashion<br>Metal Products<br>Trade Co., Ltd.       | De-binding<br>Furnace                    | 86-<br>1346753775<br>2 | www.advancedatomizer.com |
| Easy Fashion<br>Metal Products<br>Trade Co., Ltd.       | Sintering<br>Furnace                     | 86-<br>1346753775<br>2 | www.advancedatomizer.com |
| Ningbo Bocheng<br>Intelligent<br>Equipment Co.,<br>Ltd. | Metal<br>Injection<br>Molding<br>Machine | 86-<br>1806738722<br>1 | www.sunbun-machine.com   |



# 11. USEFUL LINKS

**Table 27: Useful Links** 

| Name of Organization                                             | E-mail Address                             |
|------------------------------------------------------------------|--------------------------------------------|
| Small and Medium Enterprises Development<br>Authority (SMEDA)    | www.smeda.org.pk                           |
| National Business Development Program (NBDP)                     | www.nbdp.org.pk                            |
| Government of Pakistan                                           | www.pakistan.gov.pk                        |
| Government of Punjab                                             | www.punjab.gov.pk                          |
| Government of Sindh                                              | sindh.gov.pk/                              |
| Government of Balochistan                                        | balochistan.gov.pk/                        |
| Government of KPK                                                | kp.gov.pk/                                 |
| Government of Gilgit Baltistan                                   | gilgitbaltistan.gov.pk/                    |
| Government of Azad Jammu & Kashmir                               | ajk.gov.pk/                                |
| Trade Development Authority of Pakistan                          | www.tdap.gov.pk                            |
| Securities and Exchange Commission of Pakistan                   | www.secp.gov.pk                            |
| State Bank of Pakistan                                           | www.sbp.gov.pk                             |
| Federal Board of Revenue                                         | www.fbr.gov.pk                             |
| Federation of Pakistan Chambers of Commerce and Industry (FPCCI) | www.fpcci.com.pk                           |
| Pakistan Stock Exchange (PSX)                                    | www.psx.com.pk                             |
| Pakistan Standards and Quality Control Authority (PSQCA)         | http://www.psqca.com.pk                    |
| Punjab Small Industries Corporation                              | https://www.psic.gop.pk/                   |
| Sindh Small Industries Corporation                               | https://ssic.gos.pk/                       |
| Government of KPK                                                | https://small_industries_d<br>e.kp.gov.pk/ |
| Government of Balochistan Industries and Commerce                | http://www.balochistan.go<br>v.pk/         |
| Pakistan Automotive Manufacturers Association (PAMA)             | https://www.pama.org.pk/                   |
| Pakistan Pharmaceutical Manufacturers Association (PPMA)         | https://ppma.org.pk/                       |
| Association of Pakistan Motorcycle Assemblers (APMA)             | www.motorcycleexport.co<br>m.              |
| All Pakistan Textile Mills Association                           | https://aptma.org.pk/                      |

# 12. ANNEXURES

# 12.1.Income Statement

| Calculations                                         |             |             |             |             |             |             |             |             |             |             |
|------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Income Statement                                     |             |             |             |             |             |             |             |             |             | SMEDA       |
|                                                      | Year 1      | Year 2      | Year 3      | Year 4      | Year 5      | Year 6      | Year 7      | Year 8      | Year 9      | Year 10     |
| Revenue                                              | 269,821,125 | 328,050,501 | 388,893,777 | 458,662,441 | 538,536,899 | 629,844,766 | 734,078,536 | 808,912,016 | 890,342,492 | 979,970,303 |
| Cost of sales                                        |             |             |             |             |             |             |             |             |             |             |
| Feedstock Cost                                       | 130,636,800 | 155,769,869 | 184,639,218 | 217,742,392 | 255,639,245 | 298,959,446 | 348,410,856 | 383,484,215 | 422,088,293 | 464,578,514 |
| Nitrogen Gas for Furnace                             | 2,100,000   | 2,311,400   | 2,544,081   | 2,800,185   | 3,082,070   | 3,392,332   | 3,733,827   | 4,109,699   | 4,523,408   | 4,978,765   |
| Generator Fuel Cost                                  | 8,640,000   | 9,509,760   | 10,467,076  | 11,520,761  | 12,680,518  | 13,957,024  | 15,362,031  | 16,908,475  | 18,610,595  | 20,484,061  |
| Direct Utilities Cost                                | 31,124,702  | 33,937,337  | 37,004,142  | 40,348,082  | 43,994,204  | 47,969,814  | 52,304,686  | 57,031,286  | 62,185,013  | 67,804,466  |
| Direct Labor                                         | 37,440,000  | 41,071,680  | 45,055,633  | 49,426,029  | 54,220,354  | 59,479,729  | 65,249,262  | 71,578,441  | 78,521,549  | 86,138,140  |
| Machinery Maintenance Cost                           | 1,880,400   | 2,069,694   | 2,278,043   | 2,507,366   | 2,759,774   | 3,037,591   | 3,343,375   | 3,679,942   | 4,050,389   | 4,458,128   |
| Total cost of sales                                  | 211,821,902 | 244,669,740 | 281,988,192 | 324,344,816 | 372,376,166 | 426,795,935 | 488,404,036 | 536,792,057 | 589,979,248 | 648,442,074 |
| Gross Profit                                         | 57,999,223  | 83,380,761  | 106,905,585 | 134,317,625 | 166,160,733 | 203,048,831 | 245,674,499 | 272,119,959 | 300,363,244 | 331,528,229 |
|                                                      |             |             |             |             |             |             |             |             |             |             |
| General administration & selling expenses            |             |             |             |             |             |             |             |             |             |             |
| Management Staff                                     | 5,460,000   | 5,989,620   | 6,570,613   | 7,207,963   | 7,907,135   | 8,674,127   | 9,515,517   | 10,438,523  | 11,451,059  | 12,561,812  |
| Building rental expense                              | 3,600,000   | 3,960,000   | 4,356,000   | 4,791,600   | 5,270,760   | 5,797,836   | 6,377,620   | 7,015,382   | 7,716,920   | 8,488,612   |
| Indirect Utilities                                   | 1,592,578   | 1.736.494   | 1.893.415   | 2,064,517   | 2.251.080   | 2,454,503   | 2,676,308   | 2,918,157   | 3,181,861   | 3,469,396   |
| Communications expense (phone, mail, internet, etc.) | 1,092,000   | 1,197,924   | 1,314,123   | 1,441,593   | 1,581,427   | 1,734,825   | 1,903,103   | 2,087,705   | 2,290,212   | 2,512,362   |
| Office vehicles running expense                      | 612,750     | 674,434     | 742,326     | 817,054     | 899,304     | 989,834     | 1,089,477   | 1,199,151   | 1,319,866   | 1,452,732   |
| Office expenses (stationery, entertainment etc.)     | 1,092,000   | 1,197,924   | 1,314,123   | 1,441,593   | 1,581,427   | 1,734,825   | 1,903,103   | 2,087,705   | 2,290,212   | 2,512,362   |
| Promotional expense                                  | 1,349,106   | 1,640,253   | 1,944,469   | 2,293,312   | 2,692,684   | 3,149,224   | 3,670,393   | 4,044,560   | 4,451,712   | 4,899,852   |
| Depreciation expense                                 | 10,232,731  | 10,232,731  | 10,232,731  | 10,232,731  | 10,232,731  | 10,232,731  | 9,980,431   | 10,803,871  | 10,803,871  | 10,803,871  |
| Amortization of pre-operating costs                  | 650,288     | 650,288     | 650,288     | 650,288     | 650,288     | 10,232,731  | 3,500,431   | 10,005,071  | 10,005,071  | 10,005,071  |
| Bad debt expense                                     | 1.349.106   | 1.640.253   | 1.944.469   | 2.293.312   | 2,692,684   | 3.149.224   | 3,670,393   | 4.044.560   | 4.451.712   | 4,899,852   |
| Subtotal                                             | 27,030,559  | 28.919.920  | 30,962,557  | 33,233,962  | 35,759,522  | 37,917,130  | 40,786,346  | 44,639,613  | 47,957,426  | 51.600.851  |
| Operating Income                                     | 30,968,665  | 54,460,842  | 75,943,028  | 101,083,663 | 130,401,211 | 165,131,701 | 204,888,153 | 227,480,345 | 252,405,818 | 279,927,378 |
| Operating income                                     | 30,500,003  | 34,400,642  | 75,545,026  | 101,085,005 | 130,401,211 | 105,151,701 | 204,666,133 | 221,460,343 | 232,403,818 | 2/3,32/,3/6 |
| Other income 2                                       |             |             |             |             |             |             |             |             |             |             |
| Gain / (loss) on sale of machinery & equipment       | -           | -           | -           | -           | -           | -           | -           | -           | -           |             |
| Gain / (loss) on sale of office equipment            | -           | -           | -           | -           | -           | -           | 504,875     | -           | -           |             |
| Gain / (loss) on sale of office vehicles             | -           | -           | -           | -           | -           | -           | 478,250     | -           | -           |             |
| Earnings Before Interest & Taxes                     | 30,968,665  | 54,460,842  | 75,943,028  | 101,083,663 | 130,401,211 | 165,131,701 | 205,871,278 | 227,480,345 | 252,405,818 | 279,927,378 |
| Subtotal                                             |             |             |             |             |             |             |             |             |             |             |
| Earnings Before Tax                                  | 30,968,665  | 54,460,842  | 75,943,028  | 101.083.663 | 130,401,211 | 165.131.701 | 205,871,278 | 227,480,345 | 252,405,818 | 279,927,378 |
| Eartings Detote 18X                                  | 500,808,00  | J4,400,64Z  | 13,943,028  | 101,065,005 | 130,401,211 | 103,131,701 | 203,6/1,2/8 | 221,400,343 | 232,403,618 | 213,321,318 |
| Tax                                                  | 13,609,816  | 22,981,295  | 30,500,060  | 39,299,282  | 49,560,424  | 61,716,095  | 75,974,947  | 83,538,121  | 92,262,036  | 101,894,582 |
| NET PROFIT/(LOSS) AFTER TAX                          | 17,358,849  | 31,479,547  | 45,442,968  | 61,784,381  | 80,840,787  | 103,415,605 | 129,896,331 | 143,942,225 | 160,143,782 | 178,032,796 |

# 12.2.Balance Sheet

| Calculations                       |             |             |             |             |             |             |             |             |             |             | SMEDA      |
|------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|
| Balance Sheet                      |             |             |             |             |             |             |             |             |             |             |            |
|                                    | Year 0      | Year 1      | Year 2      | Year 3      | Year 4      | Year 5      | Year 6      | Year 7      | Year 8      | Year 9      | Year 1     |
| Assets                             |             |             |             |             |             |             |             |             |             |             |            |
| Current assets                     |             |             |             |             |             |             |             |             |             |             |            |
| Cash & Bank                        | 3,000,000   | 7,865,863   | 23,675,980  | 39,531,091  | 55,482,310  | 71,575,765  | 87,295,297  | 97,098,700  | 111,280,127 | 121,493,098 | 227,502,75 |
| Accounts receivable                | -           | 8,994,038   | 10,935,017  | 12,963,126  | 15,288,748  | 17,951,230  | 20,994,826  | 24,469,285  | 26,963,734  | 29,678,083  | 32,665,67  |
| Equipment spare part inventory     | 313,400     | 377,949     | 455,793     | 549,670     | 662,882     | 799,411     | 964,061     | 1,162,623   | 1,402,081   | 1,690,859   | -          |
| Raw material inventory             | 10,886,400  | 14,287,559  | 18,640,362  | 24,195,198  | 31,265,799  | 40,244,831  | 51,623,247  | 62,539,866  | 75,764,991  | 91,786,794  | _          |
| Finished goods inventory           |             | 4,412,956   | 5,097,286   | 5,874,754   | 6,757,184   | 7,757,837   | 8,891,582   | 10,175,084  | 11,183,168  | 12,291,234  | 13,509,21  |
| Pre-paid building rent             | 300,000     | 330,000     | 363,000     | 399,300     | 439,230     | 483,153     | 531,468     | 584,615     | 643,077     | 707,384     |            |
| Total Current Assets               | 14,499,800  | 36,268,364  | 59,167,437  | 83,513,139  | 109,896,153 | 138,812,227 | 170,300,481 | 196,030,173 | 227,237,177 | 257,647,453 | 273,677,64 |
| Fixed assets                       |             |             |             |             |             |             |             |             |             |             |            |
| Land                               | _           | _           | _           | _           | _           | _           | _           | _           | _           | _           | _          |
| Building Infrastructure Renovation | 738.312     | 664.480     | 590,649     | 516,818     | 442,987     | 369,156     | 295,325     | 221,493     | 147.662     | 73,831      | _          |
| Machinery & equipment              | 94,020,000  | 84,618,000  | 75,216,000  | 65,814,000  | 56,412,000  | 47,010,000  | 37,608,000  | 28,206,000  | 18,804,000  | 9,402,000   | _          |
| Furniture & fixtures               | 1,113,500   | 946,475     | 779,450     | 612,425     | 445,400     | 278,375     | 111,350     | 2,110,762   | 1,794,148   | 1,477,534   | 1,160,91   |
| Office vehicles                    | 1,913,000   | 1,626,050   | 1,339,100   | 1,052,150   | 765,200     | 478,250     | 191,300     | 2,914,651   | 2,477,454   | 2,040,256   | 1,603,05   |
| Office equipment                   | 2,019,500   | 1,716,575   | 1,413,650   | 1,110,725   | 807,800     | 504,875     | 201,950     | 3,828,186   | 3,253,958   | 2,679,730   | 2,105,50   |
| Security against building          | 900,000     | 900,000     | 900,000     | 900,000     | 900,000     | 900,000     | 900.000     | 900,000     | 900,000     | 900,000     | 900,00     |
| Total Fixed Assets                 | 100,704,312 | 90,471,580  | 80,238,849  | 70,006,118  | 59,773,387  | 49,540,656  | 39,307,925  | 38,181,093  | 27,377,222  | 16,573,351  | 5,769,48   |
| Intangible assets                  |             |             |             |             |             |             |             |             |             |             |            |
| Pre-operation costs                | 3,251,440   | 2,601,152   | 1,950,864   | 1,300,576   | 650,288     |             |             | _           | _           | _           | _          |
| Total Intangible Assets            | 3,251,440   | 2,601,152   | 1,950,864   | 1,300,576   | 650,288     |             |             |             |             |             |            |
| TOTAL ASSETS                       | 118,455,552 | 129,341,097 | 141,357,150 | 154,819,833 | 170,319,828 | 188,352,883 | 209,608,405 | 234,211,266 | 254,614,398 | 274,220,804 | 279,447,12 |
|                                    |             |             |             |             |             |             |             |             |             |             |            |
| Liabilities & Shareholders' Equity |             |             |             |             |             |             |             |             |             |             |            |
| Current liabilities                |             | 2 224 424   | 2 222 442   | 2 622 255   |             |             |             | 0.000.440   | 40.770.600  | 40.000.700  |            |
| Accounts payable                   |             | 2,206,121   | 2,822,113   | 3,603,055   | 4,591,473   | 5,840,535   | 7,416,653   | 8,939,449   | 10,779,602  | 13,003,739  | 594,41     |
| Total Current Liabilities          | -           | 2,206,121   | 2,822,113   | 3,603,055   | 4,591,473   | 5,840,535   | 7,416,653   | 8,939,449   | 10,779,602  | 13,003,739  | 594,41     |
| Other liabilities                  |             |             |             |             |             |             |             |             |             |             |            |
| Shareholders' equity               |             |             |             |             |             |             |             |             |             |             |            |
| Paid-up capital                    | 118,455,552 | 118,455,552 | 118,455,552 | 118,455,552 | 118,455,552 | 118,455,552 | 118,455,552 | 118,455,552 | 118,455,552 | 118,455,552 | 118,455,5  |
| Retained earnings                  | ,,          | 8,679,424   | 20,079,486  | 32,761,227  | 47,272,804  | 64,056,796  | 83,736,201  | 106,816,266 | 125,379,245 | 142,761,513 | 160,397,15 |
| Total Equity                       | 118,455,552 | 127,134,976 | 138,535,037 | 151,216,778 | 165,728,355 | 182,512,347 | 202,191,752 | 225,271,817 | 243,834,797 | 261,217,065 | 278,852,70 |
| TOTAL CAPITAL AND LIABILITIES      | 118,455,552 | 129,341,097 | 141,357,150 | 154,819,833 | 170,319,828 | 188,352,883 | 209,608,405 | 234,211,266 | 254,614,398 | 274,220,804 | 279,447,12 |

# 12.3.Cash Flow Statement

| Calculations                                       |               |             |             |             |             |             |              |                                         |              |              | SMEDA       |
|----------------------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|--------------|-----------------------------------------|--------------|--------------|-------------|
| Cash Flow Statement                                |               |             |             |             |             |             |              |                                         |              |              |             |
|                                                    | Year 0        | Year 1      | Year 2      | Year 3      | Year 4      | Year 5      | Year 6       | Year 7                                  | Year 8       | Year 9       | Year 10     |
| Operating activities                               |               |             |             |             |             |             |              |                                         |              |              |             |
| Net profit                                         |               | 17,358,849  | 31,479,547  | 45,442,968  | 61,784,381  | 80,840,787  | 103,415,605  | 129,896,331                             | 143,942,225  | 160,143,782  | 178,032,796 |
| Add: depreciation expense                          |               | 10,232,731  | 10,232,731  | 10,232,731  | 10,232,731  | 10,232,731  | 10,232,731   | 9,980,431                               | 10,803,871   | 10,803,871   | 10,803,871  |
| amortization of pre-operating costs                |               | 650,288     | 650,288     | 650,288     | 650,288     | 650,288     | -            | -                                       | -            | -            | -           |
| Accounts receivable                                |               | (8,994,038) | (1,940,979) | (2,028,109) | (2,325,622) | (2,662,482) | (3,043,596)  | (3,474,459)                             | (2,494,449)  | (2,714,349)  | (2,987,594  |
| Finished goods inventory                           |               | (4,412,956) | (684,330)   | (777,468)   | (882,430)   | (1,000,653) | (1,133,745)  | (1,283,502)                             | (1,008,084)  | (1,108,066)  | (1,217,976  |
| Equipment inventory                                | (313,400)     | (64,549)    | (77,844)    | (93,877)    | (113,212)   | (136,530)   | (164,650)    | (198,562)                               | (239,458)    | (288,778)    | 1,690,859   |
| Raw Material Iventory                              | (10,886,400)  | (3,401,159) | (4,352,803) | (5,554,837) | (7,070,601) | (8,979,031) | (11,378,416) | (10,916,619)                            | (13,225,125) | (16,021,804) | 91,786,794  |
| Pre-paid building rent                             | (300,000)     | (30,000)    | (33,000)    | (36,300)    | (39,930)    | (43,923)    | (48,315)     | (53,147)                                | (58,462)     | (64,308)     | 707,384     |
| Accounts payable                                   | ` ' '         | 2,206,121   | 615,992     | 780,942     | 988,418     | 1,249,063   | 1,576,118    | 1,522,795                               | 1,840,153    | 2,224,137    | (12,409,322 |
| Cash provided by operations                        | (11,499,800)  | 13,545,287  | 35,889,602  | 48,616,338  | 63,224,023  | 80,150,250  | 99,455,732   | 125,473,269                             | 139,560,671  | 152,974,485  | 266,406,813 |
| Financing activities                               |               |             |             |             |             |             |              |                                         |              |              |             |
| Issuance of shares                                 | 118,455,552   | _           | _           | _           | _           | _           | _            | _                                       | _            | _            | _           |
| Purchase of (treasury) shares                      |               |             |             |             |             |             |              |                                         |              |              |             |
| Cash provided by / (used for) financing activities | 118,455,552   | -           | -           | -           | -           | -           | -            | -                                       | -            | -            | -           |
| Investing activities                               |               |             |             |             |             |             |              |                                         |              |              |             |
| Capital expenditure                                | (103,955,752) | _           | _           | _           | _           | _           | _            | (8,853,599)                             | _            | _            | _           |
| Acquisitions                                       | , ,,,,,,,,    |             |             |             |             |             |              | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |              |             |
| Cash (used for) / provided by investing activities | (103,955,752) | -           | -           | -           | -           | -           | -            | (8,853,599)                             | -            | -            |             |
| NET CASH                                           | 3,000,000     | 13,545,287  | 35,889,602  | 48,616,338  | 63,224,023  | 80,150,250  | 99,455,732   | 116,619,669                             | 139,560,671  | 152,974,485  | 266,406,81  |

#### 13. KEY ASSUMPTIONS

# 13.1. Operating Cost Assumptions

**Table 28: Operating Cost Assumptions** 

| Description                        | Details |
|------------------------------------|---------|
| Operating costs growth rate        | 10.1%   |
| Electricity growth rate            | 9.0%    |
| Water price growth rate            | 9.0%    |
| Gas price growth rate              | 9.0%    |
| Wage growth rate                   | 9.7%    |
| Office equipment price growth rate | 9.6%    |
| Office vehicles price growth rate  | 6.2%    |

# 13.2. Revenue Assumptions

**Table 29: Revenue Assumptions** 

| Description                      | Details |  |  |
|----------------------------------|---------|--|--|
| Sale price growth rate           | 10.1%   |  |  |
| Capacity utilization             | 60%     |  |  |
| Capacity utilization growth rate | 5%      |  |  |
| Maximum capacity                 | 90%     |  |  |

# 13.3.Financial Assumptions

**Table 30: Financial Assumptions** 

| Description          | Details |
|----------------------|---------|
| Project life (Years) | 10      |
| Debt: Equity         | 0:100   |
| Discount Rate        | 25%     |

# 13.4.Debt Related Assumptions

**Table 31: Debt Related Assumption** 

| Description of Cost  | Details |
|----------------------|---------|
| Project Life (Years) | 10      |




| Debt: Equity             | 50:50   |
|--------------------------|---------|
| Discount Rate            | 22%     |
| Debt Grace Period        | 1 Years |
| Interest Rate (KIBOR+3%) | 19%     |

# 13.5.Cash Flow Assumptions

**Table 32: Cash Flow Assumptions** 

| Description                         | Details |
|-------------------------------------|---------|
| Accounts receivable cycle (in days) | 10      |
| Accounts payable cycle (in days)    | 40      |



# Small and Medium Enterprises Development Authority HEAD OFFICE

4th Floor, Building No. 3, Aiwan-e-Iqbal Complex, Egerton Road, Lahore Tel: (92 42) 111 111 456, Fax: (92 42) 36304926-7

www.smeda.org.pk, helpdesk@smeda.org.pk

| REGIONAL OFFICE                        | REGIONAL OFFICE               | REGIONAL OFFICE                                                                                                        | REGIONAL OFFICE           |
|----------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|
| PUNJAB                                 | SINDH                         | KPK                                                                                                                    | BALOCHISTAN               |
| 3 <sup>rd</sup> Floor, Building No. 3, | 5 <sup>TH</sup> Floor, Bahria | Ground Floor State Life Building The Mall, Peshawar. Tel: (091) 9213046-47 Fax: (091) 286908 helpdesk-pew@smeda.org.pk | Bungalow No. 15-A         |
| Aiwan-e-Iqbal Complex,                 | Complex II, M.T. Khan Road,   |                                                                                                                        | Chaman Housing Scheme     |
| Egerton Road Lahore,                   | Karachi.                      |                                                                                                                        | Airport Road, Quetta.     |
| Tel: (042) 111-111-456                 | Tel: (021) 111-111-456        |                                                                                                                        | Tel: (081) 831623, 831702 |
| Fax: (042) 36304926-7                  | Fax: (021) 5610572            |                                                                                                                        | Fax: (081) 831922         |
| helpdesk.punjab@smeda.org.pk           | helpdesk-khi@smeda.org.pk     |                                                                                                                        | helpdesk-qta@smeda.org.pk |